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Abstract. The substitution of carbon in bulk silicon is investigated at the Hartree–Fock level
using a cluster model, and the results compared directly with periodic ‘supercell’ calculations
based on the same Hamiltonian, basis set and computational scheme. To study variations in
calculated properties with cluster size, hydrogen-saturated clusters containing five, thirty-five and
eighty-seven Si atoms are considered, with relaxation of up to the second shell of neighbours
surrounding carbon impurities. The calculated atomic relaxations and charge distributions in
supercells and large clusters are reasonably similar. In relaxed clusters however, boundary
effects lead to appreciable differences in calculated defect formation energies.

1. Introduction

The cluster approach is widely used to study local defects [1–4], chemisorption at crystalline
surfaces [5–10], molecular crystals [11–13] and, in extreme cases, the properties of bulk
solids [14, 15]. A particular advantage of this method, in which the infinite system is
approximated by a finite cluster containing a relatively small number of atoms, is the fact
that the most sophisticated many-body techniques of quantum chemistry may be used in a
straightforward way to estimate electron correlation effects. Nevertheless, there are a number
of disadvantages as compared to the more realistic supercell [16–19] and embedded-cluster
[20, 21] schemes, the most important of which are related to the spurious perturbation arising
from the abrupt truncation of the infinite lattice. For ionic systems, the most important
contribution from the missing ions is the Coulomb field, which may be approximated through
the introduction of either a finite set [5, 8, 10] or an infinite array [22] of point charges.
In metals and covalent solids by contrast, border quantum effects are important and not
easily simulated. In covalent solids the atoms at the surface of the cluster would normally
be bound to other atoms and, to simulate these bonds whilst retaining the possibility of
working with a finite cluster, the usual approach is to saturate the ‘dangling bonds’ of the
cluster with hydrogen atoms [6, 7, 9]. A number of ambiguities remain however, such
as the importance of overlap terms between the cluster and the missing infinite crystal,
the field modification arising from the presence of the hydrogen atoms and the appropriate
method to use in the case of mixed ionic–covalent situations. A justification of the cluster
models is often founda posteriori in the inner consistency of the method, i.e. convergence
of results with cluster size, and comparison with other calculations or experimental data.
However, such comparisons can of course only be qualitative, since they are generally
made between methods differing not only in the description of the local features around
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Figure 1. Total (a) and difference (b), (c), (d) valence charge-density maps for the unsubstituted
Si clusters in the (110) plane. Difference maps are for differences between the charge density of
the perfect periodic Si crystal and the clusters calculated with the same geometry, basis set and
computational conditions. (a) and (d) refer to a large cluster (87 Si atoms), (b) to a small cluster
(5 Si atoms) and (c) to a medium-sized cluster (35 Si atoms). Adjacent isodensity lines are
separated by 0.01e Bohr−3 in (a) and 0.0005e Bohr−3 in (b), (c) and (d). Continuous, dashed
and chain lines correspond to positive, negative and zero differences respectively. Density
differences greater than 0.01e Bohr−3 are not represented. The positions of the atoms in the
covalent network are highlighted by straight black lines.
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Figure 1. (Continued)
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the defect (cluster, supercell, embedding scheme), but also in the Hamiltonian, basis set
and computational parameters. Convergence with respect to the number of atoms in the
cluster is a questionable procedure since the surface perturbation increases with cluster size.
Furthermore, the cost of such calculations quickly becomes enormous, so in most cases the
largest clusters considered contain rather a small number of atoms (less than 100).

The aim of the present work is to investigate the performance of the cluster approach for
the case of carbon substitution in bulk silicon. This system is particularly appropriate for a
study of the variation of properties with cluster size, since the appreciable difference in the
electronegativities and covalent radii of carbon and silicon imply that charge transfer and
relaxation effects are considerable (the Mulliken net charge in SiC is±1.81|e| [30], and the
interatomic distances in diamond, SiC and silicon are 1.56, 1.90 and 2.36Å respectively).
In this paper, defect substitution energies, atomic relaxations, charge distributions and
electrostatic potentials are investigated as functions of the cluster size, and are compared
directly with the results of well-converged supercell calculations. This latter method involves
a periodic array of unit cells of the host crystal containing the carbon impurity at the centre.
If the cell is sufficiently large, interaction between the defects belonging to different cells
is negligible; it was shown in a previous paper [23] that a 64-atom supercell containing the
carbon impurity is large enough to describe an isolated defect consistently. Both supercell
and cluster calculations were performed using the same computer code, namely CRYSTAL92
[24, 25, 26]. In this way, differences between the results of the two methods may be
attributed completely to the assumption of cluster or periodic boundary conditions, rather
than to differences in the Hamiltonian, basis set or computational scheme.

Table 1. Structure and Mulliken charges of undoped Si clusters. Roman numerals refer to
successive stars of neighbours around the centre of the cluster.

Structure of cluster

Star 0 I II III IV V VI VII

Distance 0.0 2.36 3.86 4.53 5.46 5.95 6.69 7.09
from origin
(Å)

Number of atoms in star (number of bonds to H per Si)

Si5H12 1(0) 4(3) — — — — — —
Si35H36 1(0) 4(0) 12(1) 12(1) 6(2) — — —
Si87H76 1(0) 4(0) 12(0) 12(0) 6(0) 12(1) 24(1) 16(2)

Mulliken charges

Si5H12 −0.18 + 0.58 — — — — — —
Si35H36 −0.07 −0.10 + 0.17 + 0.15 + 0.38 — — —
Si87H76 + 0.01 −0.01 −0.05 −0.06 −0.08 + 0.17 + 0.27 + 0.33

2. Computational details

CRYSTAL92 is a widely established code that has been used to study a variety of solid-state
problems. A description of the periodic Hartree–Fock crystalline orbitals (LCAO) self-
consistent-field computational scheme embodied in this program may be found in [25] and
[26]. Recent modifications to the code now allow cluster calculations to be performed using
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an option for the automatic selection of atoms from the infinite perfect crystal, according
to distance and/or connectivity criteria. In this work we have examined clusters containing
5, 35 and 87 silicon atoms, which will be referred to as small, medium and large. Bond
distances and angles are the same as in the bulk crystal. The dangling bonds were saturated
with hydrogen atoms along Si–Si directions of the perfect crystal. The optimized Si–H
distance (1.5Å) for the small cluster was used throughout. The medium and large clusters
were constructed subject to the constraint that silicon atoms at the cluster surface were
connected to a maximum of two hydrogens.

The Gaussian basis sets adopted for silicon and carbon were the same as in previous
bulk [27] and supercell [23] studies. Two sp shells and one d shell (13 atomic orbitals) per
atom were used, with core electron states represented by Durand–Barthelat pseudopotentials
[28]. For hydrogen, a standard 21G basis set [29] was used. The computational conditions
that control the truncation of the Coulomb and exchange series, as defined in [25, 26], were
set at 5, 5, 6, 6 and 12, which provides reasonably high numerical accuracy; the total energy
per Si atom of the perfect crystal evaluated for supercells containing 2, 8, 16, 32 and 64
atoms lies always within a range of less than 10−5 Hartree (3.770 42 Hartree) [23].

3. Results and discussion

Before we examine the substitution of carbon, the quality of the cluster approach as a model
of the undoped infinite silicon crystal will be considered. In table 1, the net Mulliken
charges of atoms belonging to stars of neighbours at increasing distances from the centre
of the cluster are shown. Compared to the necessarily uncharged atoms of bulk Si, it is
apparent that only silicon atoms not directly bonded to hydrogen have net charges of less
than 0.1|e|. Due to the packed nature of the diamond structure, the small, medium and large
clusters contain only zero, one and four stars of silicon atoms that satisfy this criterion. In
the large cluster (shown in figure 1(a)), the charge distribution in the zone containing the
central atom and its first neighbours is quite close to the bulk one, with net charges smaller
than±0.01|e|. For the medium cluster, the zone similar to the bulk is much smaller, with
a charge of−0.07|e| at the central atom and−0.1|e| on the first star of neighbours. The
charges on the small cluster are quite different from those of the bulk. The relative sizes of
the bulk-like zone can be appreciated from figures 1(b)–(d) where maps of the charge-density
difference between supercell and cluster calculations are shown.

Table 2. Relaxation effects in the undoped clusters for the first- and second-nearest neighbours
of the central Si atom.1E is the total relaxation energy (eV).1R is the change in distance (Å)
between a star of neighbours and the central atom, compared to the perfect-crystal geometry.
The optimized Si–Si distance in the bulk (obtained with the same basis set) is 2.3642Å.

I II

Cluster 1E 1R 1E 1R

Si5H12 0.0025 0.01 — —
Si35H36 0.0113 0.02 0.0406 0.01
Si87H76 0.0004 0.00 0.0039 0.01

Table 1 shows that the presence of hydrogen atoms, which are more electronegative
than Si, induces a positive charge on neighbouring Si atoms, the magnitude of which
depends approximately on the degree of saturation. This effect propagates and, for the large



1128 R Orlando et al

undoped silicon clusters, between three and four bond distances from the surface hydrogens
are necessary to restore charge distributions similar to those of the bulk. The large cluster
can be crudely described as a locally neutral core, consisting of the central atom and its
first shell of neighbours, surrounded by a double layer of positive charge (from+0.17|e| to
+0.33|e|) and negative charge (up to−0.10|e| on H). For the small and medium clusters,
the neutral region disappears because the central atom is still influenced by boundary effects.
It might be thought that the atomic positions at the centre of the cluster may be affected
by the spurious electrostatic field set up by this double layer. Table 2 shows, however, that
for the undoped silicon cluster the field is not strong enough to cause significant atomic
displacements, presumably since covalent and short-range repulsion effects predominate in
determining the interatomic forces in this system.

The energy gap of the clusters, defined as the energy difference between the highest
occupied and the lowest unoccupied molecular orbitals, tends to the bulk value as the size of
the silicon cluster increases. The calculated gaps were 13.40 eV (small), 9.69 eV (medium)
and 8.65 eV (large), compared with 6.20 eV for the periodic crystal, i.e. still around 2.5 eV
greater in the large cluster. These values are all much larger than the experimental optical
gap, which is of the order of 1.2 eV [31]. However, it should be remembered that differences
in Hartree–Fock eigenvalues do not strictly correspond to excitation energies even within
a frozen orbital picture; the experimental data will also be affected by correlation, and,
probably more importantly, relaxation effects which will considerably lower the observed
excitation energies. It can therefore safely be concluded that the Hartree–Fock band gap
is a considerable overestimate of the observed optical gap, and that it is not appropriate to
interpret spectroscopic data in terms of Hartree–Fock eigenvalues. A final point regarding
the electronic structure is that the proportion of hydrogen in the highest occupied and lowest
unoccupied orbitals as measured by the coefficients in the molecular orbital expansion was
significant in all the cluster calculations, although a decrease with increasing cluster size
was observed.

We now consider the substitution of carbon into silicon clusters. In our previous
supercell study of this system [23], it was shown that the purelyelectrostaticperturbation
due to the negatively charged carbon impurity is screened almost completely by its first
shell of neighbours (four Si atoms). This is apparent in figures 2(a) and 3(a), where we
show the difference between the charge densities and electrostatic potentials of the unrelaxed
C-doped and undoped supercells. The rearrangement of charge is seen to affect essentially
only first-nearest neighbours of the carbon. Figures 2(b) and 3(b), which are the equivalent
diagrams for the large cluster, show that these features are adequately described by the
cluster model. If the polarization field is extended to include the atomic positions however,
the perturbation is found to propagate through the covalent chain as far as thefifth shell of
neighbours via displacements of the Si atoms in the vicinity of the carbon atom [23]. The
adequacy of the cluster model in describing this process may be discussed by examining
defect formation energies, which we define as

ES = [Ecluster(Si) − Eatom(Si)] − [Ecluster(C) − Eatom(C)] .

Here Ecluster(C) andEcluster(Si) are the total energies of doped and undoped clusters, and
Eatom(Si) andEatom(C) are the appropriate atomic energies (3.6550 and 5.2876 Hartree for
Si and C respectively).

Table 3 shows that, in the absence of atomic relaxation, the formation energies from
cluster calculations are very similar to those calculated using the supercell approach, even
in the case of small clusters. This indicates that, for the unrelaxed system, the electronic
structure around the first shell of neighbours of the carbon impurity is described equally
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(a)

(b)

Figure 2. Maps of the difference between the charge density of C-substituted Si and that of
unsubstituted Si; (a) refers to a periodic 64-atom supercell and (b) to a large-cluster calculation
(87 Si atoms). Adjacent isodensity lines are separated by 0.001e Bohr−3. The section and
symbols are as in figure 1.
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Table 3. Carbon substitutional energy and relaxation effects as a function of cluster size.ES

is the substitutional energy (eV) defined in (1).1R is the change in distance (Å) between the
defect and its first (four Si) and second (twelve Si) neighbours—these distances are 2.364 and
3.861Å in the perfect Si crystal. ‘First’ means that only the first shell of neighbours is allowed
to relax, while ‘second’ refers to relaxation of both first and second shells.

Cluster Relaxation ES 1R1 1R2

CSi4H12 Unrelaxed 1.90 — —
First 0.87 −0.16 —
Second — — —

CSi34H36 Unrelaxed 1.97 — —
First 0.81 −0.21 —
Second 0.72−0.23 −0.02

CSi86H76 Unrelaxed 1.99 — —
First 0.52 −0.24 —
Second 0.25−0.27 −0.05

Supercell Unrelaxed 1.93 — —
First 0.43 −0.24 —
Second 0.08−0.28 −0.05

well in both models, and that the influence of boundary effects in that region of the cluster
is small. In each case, the four nearest Si neighbours have a positive net charge that
compensates to a large extent the negative charge of carbon (table 4), and thus the CSi4

core of each cluster appears to be sufficient to describe the electronic perturbation. Although
the electrostatic field created by the double layer is appreciable, the high positional symmetry
of the central impurity site minimizes its influence. This is certainly not true near the surface
of the cluster, but, as the doped and the undoped cluster show very similar structures there,
the corresponding terms inES cancel almost completely.

Table 4. Net atomic charges and Mulliken bond populations of substituted clusters with relaxed
geometry. Asterisks indicate silicon atoms bonded to one or more hydrogens.

Mulliken charge Bond population

Cluster 0 I II 0–I I–II II–III

CSi4H12 −1.18 0.83* — 0.31 — —
CSi34H36 −1.16 0.23 0.15* 0.30 0.37 0.39
CSi86H76 −1.18 0.37 −0.08 0.30 0.38 0.38
Supercell −1.20 0.38 −0.03 0.30 0.38 0.38

It might be expected, however, that differences between substitution energies from
cluster and supercell calculations could increase when relaxation is taken into account,
because the defect perturbation then extends further from the impurity into regions where
the screening of the border effect is only partial. The results shown in table 3 confirm this;
defect substitution energies from the cluster calculations differ from the supercell results by
0.44 (small), 0.38 (medium) and 0.09 (large) eV when first nearest neighbours are allowed
to relax, and 0.64 (medium) and 0.17 (large) eV with the addition of relaxed second-nearest
neighbours. For a consistent description of the defect energetics in this system, it thus
appears that relaxation of the covalent network needs to be accurate to large numbers of
stars of neighbours, implying much worse agreement for smaller and medium clusters where
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(a)

(b)

Figure 3. Maps of the difference between the electrostatic potential in C-substituted Si and
that of unsubstituted Si; (a) refers to a periodic 64-atom supercell and (b) to a large-cluster
calculation (87 Si atoms). Adjacent isopotential lines are separated by 0.027 eV. The section
and symbols are as in figure 1.
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these neighbours are either absent or are significantly perturbed by border effects.

4. Conclusion

In this study, we have compared the description of carbon substitution in bulk silicon at the
Hartree–Fock level using various cluster models and a periodic supercell model. The cluster
model proves to be adequate to describe the local charge distribution surrounding the defect.
As was found in periodic supercell calculations [23], the purely electrostatic perturbation
due to the carbon impurity is very short ranged and screened virtually completely by the
nearest Si neighbours, to the extent that it is described well even in the smallest cluster.
In the absence of relaxation, we find a difference of only 0.03 eV in substitution energy
compared to supercell calculation with the same basis set and computational conditions.
However, atomic relaxation effects are much more sensitive to cluster termination and the
energetic effect of such relaxations surrounding the defect is high (around 2 eV). Large
clusters are thus required if accurate results are to be obtained. The error in the substitution
energy is still considerable in our largest cluster (containing 87 Si atoms) even though the
magnitude of the relaxation is reasonably accurate. These results highlight the care with
which one should approach such calculations, particularly when discussing results obtained
with small covalently bonded clusters (e.g. [7] where less than five non-hydrogen atoms per
cluster were used).
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